Sharp L-bounds for the Wave Equation on Groups of Heisenberg Type
نویسندگان
چکیده
Consider the wave equation associated with the Kohn Laplacian on groups of Heisenberg type. We construct parametrices using oscillatory integral representations and use them to prove sharp L and Hardy space regularity results.
منابع مشابه
Sharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملNew analytical soliton type solutions for double layers structure model of extended KdV equation
In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...
متن کاملTranslation invariant surfaces in the 3-dimensional Heisenberg group
In this paper, we study translation invariant surfaces in the 3-dimensional Heisenberg group $rm Nil_3$. In particular, we completely classify translation invariant surfaces in $rm Nil_3$ whose position vector $x$ satisfies the equation $Delta x = Ax$, where $Delta$ is the Laplacian operator of the surface and $A$ is a $3 times 3$-real matrix.
متن کاملMoment bounds and asymptotics for the stochastic wave equation
We consider the stochastic wave equation on the real line driven by space–time white noise and with irregular initial data. We give bounds on higher moments and, for the hyperbolic Anderson model, explicit formulas for second moments. These bounds imply weak intermittency and allow us to obtain sharp bounds on growth indices for certain classes of initial conditions with unbounded support. c ⃝ ...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014